
Working Paper No. 363

COMPUTER-BASED MODELING ENVIRONMENTS

DTIC 
by

S :LET 0 D Arthur M. GeoffrionMAR 1 3 1985]

00 December 1988

Ln
N
00

La

WESTERN NANAGENIENT SCIENCE INSTITUTE
University of California. Los Angeles



WESTERN MANAGEMENT SCIENCE INSTITUTE
University of California, Los Angeles

Working Paper No. 363

December, 1988

COMPUTER-84SE MOPEL1.T G ENV1!RC NMDNTS S 7;; .%&1

by .

Arthur M. Geoffrion

IV--t

Abstract

This paper gives the author's views on the kind of computer-based modeling environment
needed to properly support management science/operations research work, and on the design
challenges that need to be met in order to bring such modeling environments into being. It
is a written version of the main ideas of two addresses: a plenary at IFORS 87 in Buenos
Aires (August, 1987), and the keynote at the 1988 Canadian Operations Research Society
Meeting in Montreal (May, 1988).

Acknowledgments

I gratefully acknowledge the helpful comments of Leonard Fortuin, Melanie Lenard, Laurel
Neustadter, and Fernando Vicufila.

This work was supported partially by the National Science Foundation, the Office of Naval
Research, the Navy Personnel Research and Development Center (San Diego), and Shell
Development Company. The views expressed are those of the author and not of the
sponsoring agencies.

I. :i! /

A



One of the greatest challenges facing Management Science/Operations Research
(MS/OR) for the rest of the 20th century is the design and construction of better

\ computer-based modeling environments within which to carry out most kinds of applied
viodel-based work.-3

Modeling environments have tfe potential to greatly increase the productivity of
model-based work through better tools, to improve the guality of model-based work
through better support for good modeling style and work practices, and to improve the
freauency of use of MS/OR by bringing about a more comfortable working relationship
between MS/OR professionals and their constituencies. - z ) __

Five main characteristics appear necessary in order for a modeling environment to
achieve these benefits. Section 1 explains, justifies, and gives some of the design
implications of each of these in turn.

Section 2 discusses in some detail three of the main design challenges that follow from
the design implications of Section 1. One of the conclusions that emerges is the strong
pertinence of several subfields of Computer Science to the overall conception, design, and
implementation of modeling environments.

The final section indicates briefly that the structured modeling approach is consistent
with the desired characteristics, and that it can deal successfully with the three design
challenges. However, we give no details because the aim of this paper is not to introduce
structured modeling, but rather to encourage the MS/OR and allied communities to think
more deeply about modeling environments.

Readers interested in research will find many intriguing research questions raised by
the ideas sketched here. Opportunities for cross-fertilization with Computer Science are
especially abundant. Readers interested in systems development likewise will find many
challenges. Readers mainl, concerned with real applications will find nrihing here of
immediate applicability, but we hope that they will be inspired to make known their views
on what would constitute a truly useful computer-based modeling environment.

Improved computer-based modeling environments are not the only route to improved
productivity, quality, and frequency of use for MS/OR. Other promising approaches to
these objectives, most of them complementary to improved modeling environments, have
been proposed by other authors (e.g., Bonder <1979>, Fortuin and Lootsma <1985>, Gass
<1987>, Pruzan <1988>).

1. DESIRED CHARACTERISTICS OF A MODELING ENVIRONMENT

In my view, a modeling environment should have certain properties if the three

benefits just noted are to be achieved. It should:

I. nurture the entire modeling life-cycle, not just part of it;

2. be hospitable to decision and policy makers, not just to MS/OR professionals;

3. facilitate ongoing evolution of the models and systems built within it;

-1-



4. enable all of its inhabitants to "speak" the same paradigm-neutral language for
model definition;

5. facilitate good management of key resources, namely data, models, solvers, and
knowledge derived from these.

Readers are requested to keep their own modeling tools in mind as each of these is
discussed, and to ponder how well their tools measure up. The answers may lead to a
greater appreciation for why these five characteristics are so important.

Computer-Based Life-Cycle Support

Every modeling project and every model-based system has a life-cycle that spans
conception, development, use, and eventual termination. A true modeling environment
should support the entire life-cycle from cradle to grave (Gass <1987>). Anything less
would mean lost opportunity.

Different authors propose different versions of a typical life-cycle, usually with
between 10 and 15 phases. The definition of the phases is not as important as the fact
that they are strongly coupled: the output of one is the input of another, and iteration is
common. Consequently, most phases call for integrated treatment to the extent that they
are supported by computer-based tools. The alternative, using disjoint tools, is expensive
and inefficient owing to resulting wasteful overlaps and burdensome interfaces.

It follows that a modeling environment requires a high degree of software integration,
especially with respect to tools and utilities for communication (e.g., business graphics,
telecommunications, and word processing or even desktop publishing), for organizing things
and ideas (e.g., configuration and version control, database management, file management,
outlining, and project management), and for quantitative analysis (e.g., data acquisition,
interactive data analysis, graphics, mathematical, spreadsheet, and statistical programs).

Another design implication is that a modeling environment should provide for linkable
libraries of data sources, models, solvers, and derived results -- the main things to which
software tools are applied in the course of the modeling life-cycle. (In this paper, the term
"solver" means an equation solver, optimizer, equilibrium calculator, query processor, or
other model manipulation apparatus; and the term "linkable" means tractable for purposes of
coupling or integration.)

Hospitable to Decision/Policy Makers

A true modeling environment should be hospitable not only to modeling professionals,
but also to those for whom the modeling work is done. Important aspects of hospitability
include 4Aj cf model representation, intuitive organization, ease of learning and use, and
provision for specialized, fool-proof access paths for non-technical and infrequent users.

Hospitability is important because the best results usually occur when tools can be
used directly by those who need them rather than indirectly by intermediaries. Another
reason is that non-modeling professionals have been taking up computer-based toolq on A
massive scale as an irreversible consequene of the personat computer revolution. Consider,
for example, that one rudimentary modeling tool, the spreadsheet, is said to have more
than 6 million users, to say nothing of the widespread use of database packages, project

-2-



management packages, statistical packages, and other quantitatively oriented software for
personal computers. Clearly, either MS/OR must make its tools and approaches comfortable
for its ultimate consumers, or those people will turn to other tools they already know how
to use and leave ours to rust for lack of use.

The benefits of a more hospitable modeling environment accrue not only to outsiders;
modeling professionals themselves can benefit from spending more time thinking about
significant problems and issues and less about inessential technical details.

Attempting to cater to the needs of modeling professionals and non-modeling
professionals in a single environment sometimes will raise difficult conflicts. When
resolution one way or the other is necessary, usually it should favor the modeling
professional, for fully meeting the needs of modeling professionals is the sine qua non of
a useful modeling environment. Within that requirement, decision and policy makers should
be able to use most of the higher level tools and functions of the environment with only
minimal assistance from modeling professionals. Lower level tools and functions should be
visible only to those with the expertise needed to use them.

A key design implication is that an executable modeling language is required. That is, a
language sufficiently natural that non-modeling professionals can understand it with only a
modest amount of training, and yet with a formal structure that computers can be
programmed to "understand." The following quote from Bisschop and Meeraus <1982>
underscores and elaborates on this important concept in the context of optimization-
oriented modeling:

... Based on our experience we have concluded that the key to success is a modeling
technology where only one model representation is needed to communicate with both
humans and machines. The language should be a powerful notation which can
express all the. ..information contained in the real-world problem. In addition, ...the
model representation should be such that a machine can take over the responsibility
for verifying the algebraic correctness and completeness of the model.

Executable modeling languages are discussed further in Section 2.

Other design implications are that a modeling environment should have a personal
computer/workstation implementation with a carefully designed user interface; should
provide powerful completeness and consistency checks, as many users will be relatively
naive; and should submerge MS/OR technology whenever possible (e.g., solver internals
should be hidden).

Evoluiionary Flexibility

A true modeling environment should make it easy to change (correct, improve, tailor)
things built within the environment and even the environment itself.

Flexibility is important because few modeling professionals ever get a model or a
model-based system 100% right the first time. Even if by some miracle they do, the
require,".i-ts usually change over time and thus will soon induce the need for revision. In
any case, evolution may well be essential for genuine ex,-,-lerc. The need for f!,kAibiliLy
;,as been widely ,eccgnized in the closely related field of software engineering, where
most of the associated arguments and implications (such as the value of rapid prototyping)
carry over to MS/OR with surprisingly little change (see, e.g., Brooks <1987>).

-3-



This characteristic, like the last one, calls for an executable modeling language.
Changes should be made to a declarative specification of a model or model-based system,
not to the (probably procedural) computer code that implements that specification. The
"executability" property of the modeling language should enable the changed c(,de to be
generated easily from the changed specification, the old code then being discarded. See
Balzer, Cheatham and Green <1983> for a compelling exposition of this idea in the context
of software engineering.

In fact, it is desirable to carry the idea of an executable modeling language one step
farther: specify much of the modeling environment itself in an executable metalanguage so
that it, too, will be easy to change. This is an extension of the idea of making a modeling
environment easily reconfigurable in terms of the user interface dnd what utilities it offers.

Single Paradigm-Neutral Modc! Definition Language

In a true modeling environment, there should be a lingua franca (common language)
for model definition that is very broadly applicable and not biased toward any particular
problem domain, modeling paradigm, or solver technology. This probably is the most
controversial of the five desired characteristics.

To see why one language is so desirable, one need only look at the current situation
with its profusion of paradigm-specific styles for model representation (several each for
decision trees, flow networks, Markov chains, mathematical programming, queueing systems,
etc.). This profusion is only partially driven by the quest for clarity and efficiency. Much
of it is the result of arbitrary choices, historical accidents, and lack of standards. The
resulting multiplicity of representational styles impedes communication between modeling
professionals and their clients (to say nothing of communication among professionals in
different sub-fields), and is a technical impediment to the integratinn of models and
systems -- something that is often needed to attack comprehensive or strategic problems.

The most profound design implication of a lingua franca is the necessity of a general
framework for conceptual modeling to serve as its foundation. The language itself should be
onderstandable by people with minimal specialized training, and yet have a formal
structure that is computationally tractable.

Good Management of Key Resources

A true modeling environment should provide for the accumulation, sharing, and reuse of
data, models, solvers, and derived knowledge. Accumulation is important because it is the
basis of most progress. Sharing and reuse are important because they are a major source of
gains in productivity; reinvention is just too expensive.

One evident desigr' implication is that a modeling environment should incorporate
extensive data management and model management facilities (e.g., Dolk and Konsynski
<1985>, Palmer <1984>, and Sprague and Carlson <1982>). Another, which is shared with
the first desired characteristic, is that a modeling environment should provide for linkable
libraries of data sources, models, solvers, and results. A third is that stylistic guidelines
are needed to avoid the cof,,i-n and anarchy caused by unnecessary differences in the
representation of data, models, and derived knowledge.

-4-



It is also necessary to solve the much-lamented "documentation problem" (e.g., Gass
<1984>). Consider the problem of mode! documentation. Similar ideas may apply to the
documentation of data, solvers, and derived knowledge. Human nature being what it is,
there seem to be only two workable approaches: put simply, either make the
documentation generate the model or make the model generate the documentation. The
usual situation, in which both are generated separately without a causal link, fails so
regularly in spite of good intentions that it no longer merits serious consideration. To be
safe, a modeling system ought to take both approaches by using self-documenting
, presentadions and Ii, Prcv;ding automatic documentation capabilities.

The following figure is an impressionistic attempt to illustrate the significance of the
last two desired characteristics. The top half is suggestive of the present situation in a
typical organization: there could be a hodge-podge of 3 flat data files, 2 IMS databases, an
INGRES database, a queueing model, a simulation model, 3 LP models (two with MaGen
matrix generators and one with a FORTRAN matrix generator), 2 LP codes. a library of
miscellaneous optimization routines, and some things that are unidentified because they
have no useful documentation and the developers are long gone.

NOW ...

0
MULTIPLE "LANGUAGES,, LINKING/REUSE HARD

MODELING ENVIRONMENT ...

DATA SOURCES LD l E
ANAL. MODELS F 1 lii El
SOLVERSEl

ONE BLANG UA GE'. LINKING/REUSE EASY

-5-.



The bottom half suggests how things could be in the same organization with a good
modeling environment. Everything would be defined in one language, follow explicit
stylistic guidelines, and be well organized. The same shape has been used for data sources
and analytical models because, at an appropriate level of abstraction, there is no real
difference baween them; the notion of a "model" should be general enough to subsume the
notion of "data". Also, squares have been used for data sources and analytical models to
suggest that almost any two (data/data, data/model, model/model) should be linkable.
Rectangles have been used for solvers because they are a bit harder to link with data
sources and models; but not very hard, for the world view of a solver always constitutes a
kind of "model".

2. MAJOR DESIGN CHALLENGES

The design implications noted in the previous section lead to these three major design
challenges, among others:

1. a general framework for conceptual modeling;

2. executable modeling languages;

3. software integration.

Each is discussed in turn.

ist Challenge: General Framework for Conceptual Modeling

A general framework for modeling concepts is the logical starting point for any
sensible approach to the design of modeling environments. The framework should be

a) generally applicable,

b) rigorously formal,

c) understandable and natural for the main players at each stage of the modeling
life-cycle,

d) paradigm-neutral yet compatible with most paradigms for modeling and model
manipulation,

e) consistent with "good" modeling style (conducive to modularity, parsimony, etc.),
and

f) suitable for use as a foundation for the design of executable modeling languages
(the second major design challenge).

It is interesting to note that, although the importance of such frameworks has not yet
been recognized widely in MS/OR, analogous foundations have received much attention in
certain neighboring fields. In particular, conceptual modeling is pursued as data modeling in
database theory, as knowledge representation in artificial intelligence, and as programming

-6-



language abstractions in high-level language design. See Brachman and Levesque <1985>,
Brodie et. al. <1984>, Shaw <1984>, and Tsichritzis and Lochovsky <1982>. To cite just one
prominent example, the relationai data model (Codd <1970>) has been immensely influential
and successful in the database field. Its theory is elegant, powerful, and :Zh, and in
practice is sweeping all else before it. Much of value can be carried over from conceptual
modeling efforts in other fields to MS/OR.

For further discussion of the importance of conceptual modeling and perinent
interdisciplinary parallels, see pages 577 and 580 of Geoffrion <1987b>.

Four approaches to the design of conceptual modeling frameworks for MS/OR are
based, respectively, on: (1) entities, attributes, relations, and sets, (2) networks of
modules, (3) attributed graphs, and (4) definitional systems.

The first approach has been around since the early 60s in the form of certain
simulation languages, most notably GASP and SIMSCRIPT. Its most articulate proponent
"-s been H. Markowitz, who has also demonstrated the generality of this approach by

developing a powerful application development system called EAS-E (Markowitz, Malhotra
and Pazel <1984>). Also in this general category are the relational data model extensions
of Blanning <1987>, the popular entity-relationship approach of Chen <1976>, and the
Extended Structured Systems Approach of MUller-Merbach <1983>.

The second approach has its roots in systems theory. It views a model as an
interconnected network of modules, ,azh with input(s), output(s), and an internal
transformation rule. An example in the context of integrated energy models is Hogan and
Weyant <1983>. A more recent development in this vein is the "systems framework" of
Muhanna <1987>, which seems mainly to be concerned with describing models "in the
large" rather than with the smaller details. See also Liang <1986>.

The third approach adopts attributed graphs as its conceptual formalism. "Nodes" are
classified into "node types", "arcs" are classified into "arc types", and each node type and
each arc type can have its own list of "attributes". Attributed graphs have been used
often in MS/OR and related fields. What has been lacking until recently are good ways to
characterize the common structure shared by important classes of graphs. Jones <1985>
overcomes this shortcoming by adapting the theory of graph grammars to make attributed
graphs a much more powerful framework for conceptual modeling. See also G6ttler <1987>
and Jones <1988>.

The fourth approach views a model as a collection of definitions that formalizes and
organizes what is known or assumed about what is being modeled. This view is at the core
of "structured modeling" (Geoffrion <1987b>). More specifically, structured modeling
formalizes a particular kind of definitional system, namely one that is correlated, acyclic,
grouped, hierarchical, typed, and interpreted (Geoffrion <1989>).

To leave the impression that the four approaches are totally distinct would be wrong.
A close examination shows that they have much in common. Further discussion of these and
other approaches to conceptual modeling can be found in Geoffrion <1987a>.

-7-



2nd Challenge: Executable Modeling Languages

An executable modeling language is needed to support whatever general framework is
adopted for conceptual modeling. We can conclude from Section 1 that an executable
modeling language should possess certain characteristics. In particular, points (a) through
(e) given for the first design challenge apply here also. Some of these must be interpreted
a bit differently because we are talking about a language rather than a general framework;
for example, "understandable and natural for the main players at each stage of the
modeling life-cycle" has to do, among other things, with being declarative rather than
procedural and highly mnemonic rather than cryptic. We can also conclude from Section 1
that an executable modeling language should be able to perform extensive consistency
checks.

The adjective "executable" refers to functions that programs in the modeling
environment should be able to perform upon receiving a model written in an executable
modeling language. (Note to computer scientists: this differs from the usual definition of
"executable".) We make a distinction between a "model instance" and a "model class". The
former is a fully specified model including all relevant data, while the latter is a familial
collection of modcl instances. One of the precepts of good modeling requires that the
modeling language should be able to express both of these, with the former represented as
a particularization of the latter.

For a model class expressed in an executable modeling language, desirable functions
include the following:

1. Error-Trapping It is important to detect lexical, syntactic, and checkable semantic
mistakes. Examples of these could be, respectively: a misspelled keyword, unbalanced
parentheses, and a reference to something that is undefined.

2. Automatic Documentation There are obvious benefits to the automatic production
of various kinds of documentation, such as an indirect cross-reference map of model
elements.

3. Solver Interface Setup Setting up solver interfaces for such model manipulation
tasks as interactive expression evaluation, query processing, inference, and
optimization has traditionally required tedious progr.,nming. Ideally, no such
programming should be necessary for a model defined in an executable modeling
language. For example, creation of the input file needed by an LP solver should be
accomplished automatically by its interface once model instance data are provided.
Other interfaces could enable a query processor (as in database systems), an
inference engine (as in expert systems), or an expression evaluator (as in
spreadsheets) to be used with no programming effort by the user.

4. Smart Loader/Editor for Detailed Data This function involves (a) setting up
suitable data structures to hold the detailed data needed to specify a particular
model instance within the given model class, (b) creating suitable user-accessible
input structures (perhaps tables) through which data can be entered and the],
edited, and (c) tailoring an editor for data entry and editing that "understands" the
model class at hand and uses that understanding to relieve the user of as many
burdens as possible. As an example of the last subfunction, if a model class involves
the cross product of two lists (say, to set up all possible transportation links from

-8-



plants to warehouses), then the cross product should be created automatically once
both lists have been entered.

Similar modeling environment functions are appropriate in connection with particular
model instances. Obviously error trapping and automatic documentation continue to be very
important, although the particulars change. For example, error trapping takes on the
character of "run time" checks rather than "compile time" checks (to use terminology from
compiler theory). Invoking solvers and editing data replace functions 3 and 4 above; both
should be very easy if functions 3 and 4 are done well.

Designing an executable modeling language and its associated user interface involves
several important trade-offs. Some are obvious, like generality versus executability (e.g.,
English is at one end of the spectrum and the MS-DOS command language is toward the
other). Other trade-offs are less obvious, like the conflict between direct manipulation and
journalizability. The former, exemplified by spreadsheet programs and display editors, tends
to produce high user productivity and enthusiasm (Shneiderman <1987>). But direct
manipulation makes it difficult to journalize one's modeling work in written form for
purposes of documentation, of leaving an audit tra:,, and of storage for later editing and
reuse. Two additional trade-offs deserving consideration are achieving flexibility versus
enforcing "good" modeling style (like the separation of general model structure from
detailed data), and making light demands on the modeler versus achieving powerful checks
on model completeness and consistency.

Those who are inclined toward research will find that many of these design issues
pose juicy research problems. A fine example of a research contribution to the last issue
mentioned is Bradley and Clemence <1987>, which develops a "type calculus" by which
units of measurement can be introduced into many algebraic modeling languages in a
rigorous, elegant, and active way. The rewards for making some additional demands on the
model designer include some powerful consistency checks and novel services for automatic
units conversion and scale factoring.

It is one thing to design an executable modeling language together with the associated
modeling environment functionality, but it is quite another thing to actually achieve a
successful implementation. The design of an executable modeling language and the
engineering of its implementation obviously must go hand in hand.

It is evident that compiler and related technologies from computer science are needed.
Moreover, the need for evolutionary flexibility of the modeling environment itself implies
the need for program generation technology that can accept a formal specification of the
grammar of the executable modeling language and of optional modeling environment
features, and generate the programs needed to provide the desired functionality and
features. For example, if one wishes to add calendar dates to an executable modeling
language, then it should only be necessary to change the formal grammar and regenerate
the affected modeling environment programs. Or if one wishes to drop business graphics
capabilities so that the modeling environment will fit on a 2 megabyte portable computer
with a 20 megabyte drive, then this should be a simple reconfiguration task.

There is a lot of work going on in computer science that may help solve the technical
difficulties associated with modeling environments. Three areas especially deserve mention
as probable sources of applicable technology. All three are thriving at present, owing in
part to the much-publicized "software crisis". The first is oroarammin2 environments; see,
for example, Balzer <1985>, Barstow et. al. <1984>, Conradi et. al. <1986>, and Henderson

-9-



and Notkin <1987> (the guest editors' introduction to a special issue devoted to integrated
design and programming environments). The second is computer-aided Software engineering
(CASE); see, for example, Chikofsky <1988> (the guest editor's introduction to a special
issue devoted to CASE). So-called "back end" or "lower" CASE is particularly pertinent
because it is more concerned with the thorny automatic code generation problem than
"front end" or "upper" CASE. The third pertinent area is reusability; see, for example,
Freeman <1987a>. Among the topics included here are very high level program-producing
systems such as DRACO (e.g., Freeman <1987b>).

It should be obvious that all three areas are closely related to one another. Their
influence on developers of modeling tools is in its infancy. The >nfusion of such ideas to
date is most clearly discernible in the subfield of simulation, which perhaps can be
explained by the traditionally strong identificatior of simulation modeling with computer
programming. See, e.g., Balci and Nance <1987>, Donohue et. al. <1986>, Henriksen <1983>,
and Muntz and Parker <1988>.

Numerous executable languages useful for modeling have been designed and
implemented. Many of these are mentioned or discussed in Geoffrion <1987a>, and so need
not be listed here. We mention only that there has been considerable recent interest in
languages for mathematical programming, including AMPL (Fourer, Gay and Kernighan
<1987>), CAMPS (Lucas and Mitra <1985>), GAMS (Bisschop and Meeraus <1982>), LINGO
(Cunningham and Schrage <1988>), LPL (Hurlimann and Kohlas <1988>), MIMI/LP (from
Chesapeake Decision Sciences, Inc.), and PAM (from Ketron, Inc.). Other languages could be
added from the neighboring model-related fields of artificial intelligence, database
management, and programming languages, not to mention the important advent of so-called
fourth generation languages (claimed to be learnable in no more than two days and to
boost productivity by one or two orders of magnitude). Some useful references are Date
<1986>, Jarke and Vassiliou <1985>, Martin <1985>, Rich <1983>, and Shaw <1984>.

Although the accomplishments and usefulness of existing languages are impressive, one
may reasonably conclude that none is fully adequate for the kind of modeling environment
envisioned here: for each language, either the conceptual modeling framework it is intended
to support is not sufficiently clear, or it does not meet the requirements posed at the
outset, or it lacks the breadth of functionality called for earlier, or it has a combination
of these deficiencies. Nevertheless, many of these languages are instructive precursors of
the kinds of languages needed for true modeling environments.

For other critiques of the adequacy of existing executable languages in two important
subfields of MS/OR, see the excellent reviews by Fourer <1983> and Overstreet et. al.
< 1986>.

3rd Challenge: Software Integration

It is clear from what has come before that a modeling environment is an ambitious
undertaking. It includes linkable libraries of data sources, models, solvers, and derived
results. It includes programs to supply the four kinds of functionality needed for
"executability". And it includes many tools and utilities needed for total life-cycle support
of modeling work.

Nearly all of these components should, for reasons cited in Section 1, be well
integrated.

-10-



Not only must software integration be accomplished on a grand scale, but it should be
done without compromising the five desired characteristics of modeling environments.
Hence there are requirements like a good user interface, easy reconfigurability, and so on.

Integration on this scale poses numerous problems, not the least of which is how to
accomplish it technically. A promising line of attack is to attempt to apply what has been
learned by the programming environment community. Two good reviews of that work are
Barstow, Shrobe and Sandewall <1984> (see especially the chapters on INTERLISP,
SMALLTALK, and UNIY) and Conradi, Didriksen and Wanvik <1986> (see especially the
section on Tool Integration and the article by Kaplan, et. al.). See also Clemm and
Osterweil <1986>, which describes an object management approach that has been used
successfully several times; and Vo <1985>, which describes the integration approach used
by a UNIX-based analytical modeling environment at AT&T Bell Laboratories called
ANALYTICOL, for which a five-fold productivity gain is claimed.

Certainly it is impractical to custom build every utility and functional module.
Ground-up construction of all parts of a modeling environment would be prohibitively
expensive and likely to yield a lower quality result than using proven code written by
inspired specialists. For example, a single excellent text editor probably should be adopted
for use in all parts of the modeling environment where a more advanced editor cannot be
justified (e.g., a structure editor, Reps and Teitelbaum <1987>).

One might build on an existing platform such as UNIX, as ANALYTICOL does (Childs
and Meacham <1985>). Or one might build a modeling environment around a suitable, and
probably relational, database system like INGRES. It is noteworthy that prototype extensible
database systems are in development that may prove to be better hosts than any existing
DBMS (e.g., Batory and Mannino <1986>). A related possibility would be to build on top of
an information resource dictionary system (Dolk <1988>).

Software integration is about how to achieve acceptable performance within available
machine resources. But it is also, and very importantly, about how to achieve conceptual
unity of the many parts and tools that make up a modeling environment. Conceptual unity
is an essential pursuit if any but the most diligent and experienced users of a modeling
environment are to profit from its rich variety of capabilities.

A promising approach for achieving conceptual unity is this: use the conceptual
modeling framework (see the first challenge) to "model" most or all of the modeling
environment's parts and tools. This will be possible if the framework is sufficiently
general. The advantages of doing this should be obvious. They include reduced learning
time because the structure of the environment will be represented in a familiar way, and
the ability to manipulate a detailed description of the environment using the specialized
tools of the environment itself (e.g., a query processor can be used to answer questions
concerning features of the environment).

An appeal for conceptual unity through unified modeling has been made in the
analogous context of computer software systems by Markowitz <1978>. Here is a short
quote from the closing section of that paper, from which the reader may be able to
glimpse the basic idea:

-Il-



My hypothesis is that software systems have moderately complex EAS structures;
that most subsystems or functional areas like job control or spooling, have fairly
simple EAS structures; and that the computer system would be an order of
magnitude easier to grasp if its EAS structure were documented, the user were
given a meaningful response to any request to take any elemental action on any
part of the system, and these requests could be made in (one or another) language
style applicable throughout the system.

("EAS" stands for the Entity-Attribute-Set formalism, which was mentioned briefly in the
earlier discussion of four basic approaches to general frameworks for conceptual modeling.)
Markowitz later implemented this idea partially in the application development system
EAS-E cited earlier, for which substantial advantages were claimed (Markowitz, Malhotra
and Pazel <1984>).

3. CONCLUSION

This paper has argued that five characteristics are particularly desirable for a good
modeling environment, and has discussed three of the main design challenges which follow.
(These characteristics and challenges are listed at the beginning of Sections 1 and 2.) It is
not important that the reader accept all that has been said along these lines. What is
important to the aim of this paper is that readers think about their current modeling tools
in terms of the five characteristics and perhaps others that come to mind, and that they
ponder how to conquer design challenges like those discussed here:

* To what extent do the current tools possess the five characteristics?

* To what extent should modeling tools possess these characteristics?

* How do current tools deal with the three design challenges?

* What can be done to help close the gaps?

Probably there is no one correct set of answers to the issues raised. However, one
promising approach is emerging from work on structured modeling. Structured modeling is
prov'ing tc be consistent with all five desirable characteristics, and the three major design
challenges discussed in this paper are yielding to sustained attack:

* A coherent framework for conceptual modeling, based on the extremely general idea
of a definitional system as mentioned earlier, is now in place (Geoffrion <1987b>
and <1989>).

An executable modeling language called SML that supports this conceptual modeling
framework also is in place (Geoffrion <1988>).

One of several possible approaches to the software integration challenge is being
pursued in a prototype implementation called FW/SM (user and technical
documentation in preparation). Other prototype implementations also exist or are
under development. The great generality of the definitional system framework makes
structured modeling a good candidate for pursuing the modeling approach to
conceptual unity described toward the end of Section 2. This will be undertaken as
soon as FW/SM stabilizes.

-12-



Whatever degree of success may be achieved ultimately by the structured modeling
approach, there is ample room for a variety of different approaches to the design of
modeling environments that will enable MS/OR to achieve, at long last, its full potential.

1

-13-



REFERENCES

BALCI, 0. and R.E. NANCE <1987>. "Simulation Support: Prototyping the Automation-Based
Paradigm,"/roc. Winter Simulation Conference.

ALZER,1. <1985>. "A 15 Year Perspective on Automatic Programming," IEEE Trans. oil
Software .ineering, SE-11:11 (November), pp. 1257-1268.

BALZER, R, T.E. CHEATHAM, Jr. and C. GREEN <1983>. "Software Technology in the
1990 s: Using a New Paradigm," Computer, 16:11 (November), pp. 39-45.

BARSTOW, D.R., H.E. SHROBE and E. SANDEWALL (eds.) <1984>. Interactive Programming) Environments, McGraw-Hill, New York.

BATORY, D.S. and M. MANNINO <1986>. "Panel on Extensible Database Systems," ACM
SIGMOD 86.

BISSCHOP, J. and A. MEERAUS <1982>. "On the Development of a General Algebraic
Modeling System in a Strategic Planning Environment," Math. Programming Stud. 20
(October), North-Holland, Amsterdam, pp. 1-29.

BLANNING, R.W. <1987>. "A Relational Theory of Model Management," in C.W. Holsapple
and A.B. Whinston (eds.), Decision Support Systems: Theory and Application,
Springer- Verlag.

BONDER, S. <1979>. "Changing the Future of Operations Research," Operations Research,
27:2 (March-April), pp. 209-224.

BRACHMAN, R.J. and H.J. LEVESQUE <1985>. Readings in Knowledge Representation,
Morgan Kaufmann, Los Altos, CA.

BRADLEYOG.H. and R.D. CLEMENCE, Jr. <1987>. "A Type Calculus for Executable
Modeling Lnguages," IMA J. of Math. in Management, 1:4, pp. 277-291.

BRODIE, J. MYLOPOULOS and J. SCHMIDT <1984>. On Conceptual Modeling,
Springer-V ag, Berlin.

BROOKS, <1987>. "No Silver Bullet: Essence and Accidents of Software Engineering,"
Computer, .4 (April), pp. 10-19.

CHEN, P. <1976>. "Entity-Relationship Model: Toward a Unified View of Data," ACM Trans.
on Database Systems, 1:1 (March), pp. 9-36.

CHIKOFSKY, E.J. <1988>. "Software Technology People Can Really Use," IEEE Software,
5:2 (March), pp. 8-10.

CHILDS, C. and C.R. MEACHAM <i 185>. "ANALYTICOL - An Analytical Computing
Environment," AT&T Technical J., 64:9 (November), pp. 1995-2007.

CLEMM, G. and L. OSTERWEIL <1986>. "A Mechanism for Environment Integration,"
CU-CS-323-86, Dept. of Computer Science, University of Colorado, Boulder, April.

-14-



CODD, E.F. <1970>. "A Relational Model of Data for Large Shared Data Banks,
Communications ACM, 13:6 (June), pp. 377-387.

CONRADI, R., T.M. DIDRIKSEN and D.H. WANVIK (eds.) <1986>. Advanced Programni*,
Environments, Lecture Notes in Computer Science 244, Springer-Verlag, Berlia.

CUNNINGHAM, K. and L. SCHRAGE <1988>. "The LINGO Modeling Language," LINDO
Systems, Inc., May 3.

DATE, C.J. <1986>. An Introduction to Database Systems, Volume 1, Fourth Edition,
Addison-Wesley, Reading, MA.

DOLK, D.R. <1988>. "Model Management and Structured Modeling: The Role of an
Information Resource Dictionary System," Communications ACM, 31:6 (June), pp. 704-718.

DOLK, D.R. and B.R. KONSYNSKI <1985>. "Model Management in Organizations,"
Information and Management, 9.1, pp. 35-47.

DONOHUE, G., B. BENNETT and J. HERTZOG <1986>. "The RAND Military Operations
Simulation Facility: An Overview," N-2428-RC, April.

FORTUIN, L. and F.A. LOOTSMA <1985>. "Future Directions in Operations Research," in
A.H.G. Rinnooy Kan (ed.), New Challenges for Management Research, North-Holland,
Amsterdam.

FOURER, R. <1983>. "Modeling Languages Versus Matrix Generators for Linear
Programming," ACM Trans. Math. Software, 9.2 (June), pp. 143-183.

FOURER, R., D.M. GAY and B.W. KERNIGHAN <1987>. "AMPL: A Mathematical
Programming Language," Computing Science Technical Report No. 133, AT&T Bell
Laboratories, Murray Hill, NJ, January.

FREEMAN, P. <1987a>. Software Reusability, IEEE Cat. No. EH0256-8, Computer Society
Press, Washington, D.C.

FREEMAN, P. <1987b>. "A Conceptual Analysis of the Draco Approach to Coistructing
Software Systems," IEEE Trans. Software Engineering, SE-13:7 (July), pp. 830-844.

GASS, S. I. <1984>. "Documenting a Computer-Based Model," Interfaces, 14:3 IMay-June),
pp. 84-93.

GASS, S. 1. <1987>. "Managing the Modeling Process: A Personal Reflection," European
Journal of Operational Research, 31:1 (July), pp. 1-8.

GEOFFRION, A.M. <1987a>. "Modeling Approaches and Systems Related to Structured
Modeling," Working Paper 339, Western Management Science Institute, UCLA, February.

GEOFFRION, A.M. <1987b>. "An Introduction to Structured Modeling," Management
Science, 33:5 (May), pp. 547-588. A version that includes a section on implementation is
available as Working Paper 338, Western Management Science Institute, UCLA, 75 pages,
most recently revised 3/88.

-15-



GEOFFRION, A.M. <1988>. "SML: A Model Definition Language for Structured Modeling,"
Working Paper 360, Western Management Science Institute, UCLA, May.

GEOFFRION, A.M. <1989>. "The Formal Aspects of Structured Modeling," to appear in
Operations Research, 37:1 (January-February).

GOTTLER, H. <1987>. "Graph Grammars and Diagram Editing," in H. Ehrig, M. Nagi, G.
Rozenberg, and A. Rosenfeld (eds.) Graph Grammars and Their Application to Computer
Science, Springer-Verlag, Berlin.

HENDERSON, P.B. and D. NOTKIN <1987>. "Integrated Design and Programming
Environments," Computer, 20,11 (November), pp. 12-16.

HENRIKSEN, J.O. <1983>. "The Integrated Simulation Environment: Simulation Software of
the 1990s," Operations Research, 31:6 (November-December), pp. 1053-1073.

HOGAN, W.W. and J.P. WEYANT <1983>. "Methods and Algorithms for Energy Model
Composition: Optimization in a Network of Process Models," in B. Lev (ed.), Energy Models
and Studies, North-Holland, Amsterdam.

HURLIMANN, T. and J. KOHLAS <1987>. "LPL: A Structured Language for Linear
Programming Modeling," OR Spektrum, 10, pp. 55-63.

JARKE, M. and Y. VASSILIOU <1985>. "A Framework for Choosing a Database Query
Language," ACM Computing Surveys, 17:3 (September), pp. 313-340.

JONES, C.V. <1985>. Graph-Based Models, Ph.D. Thesis, Cornell University.

JONES, C.V. <1988>. "An Introduction to Graph-Based Modeling Systems," Working Paper
88-10-2, Department of Decision Sciences, The Wharton School, University of Pennsylvania.

LIANG, T.P. <1986>. Toward the Development of a Knowledge-Based Model Management
System, Ph.D. Dissertation, University of Pennsylvania.

LUCAS, C. and G. MITRA <1985>. "CAMPS: Preliminary User Manual," Department of
Mathematics and Statistics, Brunei University, Middlesex, U.K., July.

MARKOWITZ, H.M. <1978>. "SIMSCRIPT: Past, Present, and Some Thoughts About the
Future," RC 7075 (#30326), Thomas J. Watson Research Center, Yorktown Heights, April 20.

MARKOWITZ, H.M., A. MALHOTRA and D.P. PAZEL <1984>. "The EAS-E Application
Development System: Principles and Language Summary," Communications ACM, 27:8
(August), pp. 785-799.

MARTIN, J. <1985>. Fourth-Generation Languages, Prentice-Hall, Englewood Cliffs, NJ.

MUHANNA, W.A. <1987>. "A Systems Framework for Model Software Management in
Organizations," Ph.D. Dissertation, School of Business, Univ. of Wisconsin-Madison.

MULLER-MERBACH, H. <1983>. "Model Design Based on the Systems Approach," J.
Operational Research Society, 34:8, pp. 739-751.

-16-



MUNTZ, R.R. and D.S. PARKER <1988>. "Tangram: Project Overview," CSD-880032,
Computer Science Department, University of California, Los Angeles, April.

OVERSTREET, C.M., R.E. NANCE, 0. BALCI and L.F. BARGER <1986>. "Specification
Languages: Understanding Their Role in Simulation Model Development," Technical Report
TR-87-7, Dept. of Computer Science, Virginia Tech, December.

PALMER, K. <1984>. A Model Management Framework for Mathematical Programming,
Wiley, New York.

PRUZAN, P. <1988>. "Systemic OR and Operational Systems Science," European Journal of
Operational Research, 37:1 (October), pp. 34-41.

REPS, T. and T. TEITELBAUM <1987>. "Language Processing in Program Editors,"

Computer, 20.11 (November), pp. 29-40.

RICH, E. <1983>. Artificial Intelligence, McGraw-Hill, New York.

SHAW, M. <1984. "The Impact of Modeling and Abstraction Concerns on Modern
Programming Languages," in Brodie et. al. <1984>.

SHNEIDERMAN, B. <1987>. Designing the User Interface, Addison-Wesley, Reading, MA.

SPRAGUE, R.H., Jr. and E.D. CARLSON <1982>. Building Effective Decision Support
Systems, Prentice-Hall, Englewood Cliffs, NJ.

TSICHRITZIS, D.C. and F.H. LOCHOVSKY <1982>. Data Models, Prentice-Hall, Englewood
Cliffs, NJ.

VO, K.-P. <1985>. "IFS - A Tool to Build Integrated, Interactive Application Software,"
AT&T Technical J., 64:9 (November), pp. 2097-2117.

-17-


